Gray Matter Axonal Connectivity Maps
نویسندگان
چکیده
Structural brain connectivity is generally assessed through methods that rely on pre-defined regions of interest (e.g., Brodmann's areas), thus preventing analyses that are largely free from a priori anatomical assumptions. Here, we introduce a novel and practical technique to evaluate a voxel-based measure of axonal projections connecting gray matter tissue [gray matter axonal connectivity map (GMAC)]. GMACs are compatible with voxel-based statistical approaches, and can be used to assess whole brain, scale-free, gray matter connectivity. In this study, we demonstrate how whole-brain GMACs can be generated from conventional structural connectome methodology, describing each step in detail, as well as providing tools to allow for the calculation of GMAC. To illustrate the utility of GMAC, we demonstrate the relationship between age and gray matter connectivity, using voxel-based analyses of GMAC. We discuss the potential role of GMAC in further analyses of cortical connectivity in healthy and clinical populations.
منابع مشابه
P27: Brain Network as a Pivotal Part in Intelligence Function
Neuroimaging findings have proposed that some brain regions including the precuneus, posterior cingulate, and medial prefrontal cortex play an essential role of a structural core in the brain. Network organization endures rapid alterations in development with changes in axonal synaptic connectivity, white matter volume, and the thickness of corresponding cortical regions. Structural maturation ...
متن کاملConnectivity-driven white matter scaling and folding in primate cerebral cortex.
Larger brains have an increasingly folded cerebral cortex whose white matter scales up faster than the gray matter. Here we analyze the cellular composition of the subcortical white matter in 11 primate species, including humans, and one Scandentia, and show that the mass of the white matter scales linearly across species with its number of nonneuronal cells, which is expected to be proportiona...
متن کاملUniformity and Deviation of Intra-axonal Cross-sectional Area Coverage of the Gray-to-White Matter Interface
Diffusion magnetic resonance imaging (dMRI) is a compelling tool for investigating the structure and geometry of brain tissue based on indirect measurement of the diffusion anisotropy of water. Recent developments in global top-down tractogram optimizations enable the estimation of streamline weights, which characterize the connection between gray matter areas. In this work, the intra-axonal cr...
متن کاملCharacterizing brain anatomical connections using diffusion weighted MRI and graph theory.
A new methodology based on Diffusion Weighted Magnetic Resonance Imaging (DW-MRI) and Graph Theory is presented for characterizing the anatomical connections between brain gray matter areas. In a first step, brain voxels are modeled as nodes of a non-directed graph in which the weight of an arc linking two neighbor nodes is assumed to be proportional to the probability of being connected by ner...
متن کاملPhysics-based Models of Brain Structure Connectivity Informed by Diffusion-weighted Imaging
Recent evidence indicates that neural adaptations related to changes in task performance occur in not only gray matter brain regions but also the white matter fiber tracts that connect the gray matter regions with one another. Here, we propose a framework for linking individual differences in global properties of the brain’s anatomical connectivity, or connectome, to individual differences in t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2015